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Abstract - We present predictive models that can foresee how 
skin will react when exposed to chemicals. Skin impedance 
spectra, 31 frequencies between 1 and 1000 kHz at five depth 
settings, were collected before and after application of 
chemicals on volar forearms of volunteers. Tegobetaine and 
sodium lauryl sulphate were used to induce the irritations. The 
spectra were filtered using orthogonal signal correction (OSC). 
The relation between skin impedance of normal and chemically 
irritated skin was modelled using partial least squares 
regression (PLS). The predictive ability of this model is 
demonstrated for two irritants, and additional studies are 
required to establish this property for other chemicals. 
 
Keywords - Skin impedance, skin irritation, multivariate 
analysis, partial least squares regression, PLS, orthogonal 
signal correction, OSC 

 
 

I. INTRODUCTION1 
 
Bio-impedance detection is a non-invasive, rapid and 
reliable method in characterising the properties of skin and 
other biological tissues. It has previously been shown that 
skin impedance is well suited in monitoring skin irritations. 
The purpose of this study is to compare and correlate 
impedance of two conditions of skin; unaffected normal skin 
and skin irritated by chemicals, using multivariate projection 
methods. 
 

II. METHODOLOGY 
 
A. Clinical 
 

Locations on the forearms of 21 healthy volunteers were 
exposed to two surfactant solutions, tegobetaine (TEG) and 
sodium lauryl sulphate (SLS), for 24 hours using Finn 
chambers. The concentrations were 1% for SLS and 4% of 
TEG. Water was used as solvent. 

 
Skin impedance spectra were measured before and 24 

hours after removal of the chemicals. The impedance spectra 
were collected at 31 logarithmically distributed frequencies 
from 1 kHz to 1 MHz at five depth settings using an 
impedance spectrometer provided by SciBase AB, 
Huddinge, Sweden. The impedance technique and clinical 
methods are described in detail in [1].  
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B. Data analysis 
 
There are several approaches in modelling bio-

impedance. Traditionally, bio-impedance data have been 
fitted to equivalent circuits. Several examples of traditional 
modelling can be found in [2, 3]. 

  
Traditional modelling is a theoretical approach with 

some critical drawbacks. In order to analyse bio-impedance, 
and emphasise the information from the β-dispersion, in an 
objective and straightforward way, Ollmar et al. [4], 
proposed a simple irritation index, IX. A set of four indices 
(one which is closely related to the old irritation index) were 
later introduced by Ollmar et al. [5] and used by Nicander et 
al. [6]. One of the four indices, the magnitude index (MIX) 
is closely related to the old irritation index. These four 
indices, based on the magnitude and phase of two 
frequencies, have been shown to extract a significant amount 
of the information from full impedance spectra of intact, or 
nearly intact, skin. 

 
Sethson-Lindholm et al. [7], used multivariate projection 

methods to classify type 1 diabetics and healthy volunteers 
using full impedance spectra.  

 
Compared to the traditional, theoretical, way of 

modelling bio-impedance, the multivariate projection 
technique is an empirical and statistical approach. The most 
common multivariate projection tools are principal 
component analysis (PCA) [8] and partial least squares 
regression (PLS) [9]. PCA and PLS of bio-impedance is 
described in detail in [7]. In PCA, sets of orthogonal vectors 
that describe most of the variance of the data are extracted. 
The vectors are called scores and loadings. The scores are 
related to the objects and the loadings are related to the 
variables. In PLS, the relation between a multivariate data 
matrix, X, set and a set of predictor variables, Y, is 
modelled, Y is described by polynomials of X. A number of 
orthogonal PLS components are extracted, in a similar 
manner as in PCA, that describe most of the variance of X 
and Y data and maximise the correlation between X and Y. 

 
Orthogonal signal correction (OSC) [10] is a data pre-

treatment tool that uses multivariate projections. The OSC 
algorithm finds and removes variations in X that are 
orthogonal to Y, i.e. OSC removes unwanted information 
from X that is not correlated to Y. 
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Data handling and visualisation were done using 
MATLAB 5.0 by MathWorks Inc. Multivariate modelling 
and OSC filtering were done using SIMCA-P 8.0 by 
Umetrics AB, Umeå, Sweden. 
 

III. RESULTS 
 
There was a clear irritation effect caused by the chemicals. 
Raw impedance spectra of the magnitude, depth setting 
number 4, of normal and irritated skin is visualised in fig. 1. 
Analysis of variance (ANOVA) of MIX, it was found that 
there is a 99.9% significant difference between impedance of 
skin before and after chemical contact. SLS induced more 
irritation than TEG. MIX, depth setting number four, of the 
persons before and after chemical exposure are visualised in 
fig. 2. The straight line is where persons not affected by the 
chemicals would fall. 

 
There are some readings with deviating impedance, here 

called outliers; persons number 3, 18, of the TEG site and 
number 6, 9, and 20 of the SLS site. Some of the outliers are 
marked in fig. 1 and 2. The cause of the deviating impedance 
is explained in table I. The outliers were detected using 
visual inspection of the spectra, inspection of the indices and 
multivariate projection methods (PCA and PLS) of the full 
impedance spectra. The outliers are excluded in the 
following models. 

 
An impedance spectrum is a 2-way data set; every 

reading is a matrix of frequencies x depth settings. Hence, 
several readings will produce 3-way data [11], a 3-way array 
of readings x frequencies x depths. I.e., the structure of the 

measured data was 21 readings x 31 frequencies x 5 depth 
settings. 

 
Numerically, impedance, Z, is a complex quantity that 

consists of a real part, R, resistance, and an imaginary part, 
X, reactance, given by (1). Complex impedance can also be 
expressed in polar form using the magnitude, |Z|, and phase 
angle, θ, according to (2). 

 
Z = R + iX            (1) 
Z = |Z|eiθ,    |Z| = (R2+X2)0.5,    θ = tan-1(X/R)   (2) 
 
Using common projection techniques (PCA and PLS), it 

is not possible to model 3-way arrays or complex numbers. 
The complex impedance was converted to magnitude and 
reactance and the 3-way structure was matricised, visualised 
in fig. 3. The final structure of the data was 21 readings x 
310 highly correlated variables (31 frequencies x 5 depths x 
magnitude and reactance). 
 

It was required 4-5 PLS components and about 13 
observations to describe the relations between raw 
impedance and MIX-values of irritated skin. At this stage of 
analysis, the models were not reliable since the number of 
observations was not enough to both get a sufficiently large 
calibration set and to pick an efficiently large test set for 
validation. In order to reduce unwanted variance and to 
reduce the number of PLS components, the data was filtered 
using OSC.  

 
Calibration sets, approximately half of the total number 

of observations, were selected. The remaining observations 
were used as external test sets. The matricised impedance of 
untreated skin was used as X-variables and MIX, depth 

Fig. 2. MIX, depth setting 4, of skin before and after chemically induced 
irritations with TEG and SLS. Outliers are marked with circles. 
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Fig. 3. Structure of the measured 3-way and the matricised impedance. 
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TABLE I 
THE OUTLIERS AND THE CAUSE OF THE DEVIATING IMPEDANCE 

Patient no Site Cause 
3 TEG The skin did not react when treated with TEG and MIX 

before the chemical treatment was lower than normal 
18 TEG Low MIX after chemical contact 

6 SLS Experimental mistake 
9 SLS Very high MIX after SLS treatment 
20 SLS The impedance did not fit into the general impedance 

pattern of the volunteers 
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Fig 1. Magnitude, depth setting number 4, measured before (dotted 
line) and after (solid line) exposure with TEG (a) and SLS (b). 
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setting number one, of the irritated skin impedance was used 
as Y-variable. Two OSC models were calculated; one for the 
TEG experiment and one for the SLS experiment. The OSC 
algorithm removed 70% of the variance in the TEG data and 
45% of the variance in SLS data.  

 
Analysing the OSC loadings of the two models it was 

found that the high frequency region contained more 
unwanted variance, variance orthogonal to MIX, than the 
low frequency region. This is in agreement with the noise 
levels in bio-impedance spectra; the noise-level at low 
frequencies is lower than in the high-frequency region. 

 
The correlation between the skin impedance spectra of 

skin before chemical exposure and the MIX values of the 
five depths of the impedance after chemical contact was 
modelled using PLS. One PLS component for each model 
was used to describe the relation. The models captured 80-
90% of the variance of the X-matrix and the Y-variables. 
The cross-validated predictive ability, Q2, of the models was 
overall 80-90%. Since the number of readings of the 
calibration set was limited, Q2 was calculated using leave-
one-out technique [12]. Properties of the two models are 
listed in table II. 

 
The root mean square error of prediction (RMSEP) is a 

value of the prediction residuals in original units. It is given 
by (3), where yi is the measured and ŷi is the predicted value 
of observation i. The predictive ability of the models was 
good and RMSEP of the external test sets was low (0.74 to 
1.09). The depths were highly correlated and RMSEP of the 
different depth settings (listed in table II) did not differ 
significantly. Observed vs predicted MIX, depth number 
four, of the external test sets of the two separate models are 
visualised in fig. 4a. The straight line is where error-free 
predictions would fall. 

 

( )∑
=

−=
I

i
ii yy

I 1

2ˆ
1RMSEP          (3) 

 
Variable importance in the projection (VIP) is a value of 

the contribution of each variable in a model. Variables with 
large VIP (larger than one) are the most important. VIP of 
the frequencies are visualised in fig. 5a. Frequencies of the 
low and middle frequency region (approximately 1 to 100 

kHz) are the most important for the regression model. VIP of 
the SLS model is shifted a bit towards the high frequency 
region compared to the TEG model. High frequencies (over 
400 kHz) seem to be irrelevant for these PLS-models. 

 
Fig. 5b shows VIP for the five depth settings. There is no 

significant difference between the depths, the VIP of the 
depths range from 0.9581 to 1.0041. This indicates that, in 
this case, the information from depths is less important than 
the information from the different frequencies. 

 
The VIP of magnitude and reactance is visualised in fig. 

4a. The VIP of the reactance is a bit higher than the 
magnitude. This is an indication that the reactance is a bit 
more important in predicting the MIX than the magnitude. 
Further analysis is required to fully understand this 
phenomenon. 

 
It is evident that all X-variables correlate, more or less, 

and it is possible to reduce the number of measured variables 
to minimise the size of the data and the sampling time, 
without affecting the prediction precision of the PLS models. 
 

IV. DISCUSSION 
 
There is a clear relation between bio-impedance of normal 

and irritated skin. In order to formulate more general 
conclusions, further experiments with a larger group of test 
persons is required to validate the method thoroughly. 
Further experiments in this area will also include additional 
independent reference methods like transepidermal water 
loss (TEWL) and visual scoring of healthy volunteers with 
normal skin and patients with sensitive skin. Additional 
experiments are in progress. 

 

Fig. 4. VIP of magnitude and reactance (a). Measured vs predicted MIX, 
depth setting number 4, of the TEG (o) and SLS models (!) (b). 
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TABLE II 
PROPERTIES OF THE TWO PLS MODELS 

Depth  TEG    SLS   

Setting  R2 Q2 RMSEP  R2 Q2 RMSEP 

1  0.93 0.90 0.74  0.95 0.94 0.82 

2  0.87 0.81 0.91  0.93 0.92 0.82 

3  0.82 0.77 1.09  0.93 0.91 0.82 

4  0.86 0.80 0.84  0.94 0.93 0.88 

5  0.84 0.78 0.82  0.93 0.91 0.86 

 

Fig. 5.VIP of the frequencies (a) and the depth settings(b) for the TEG 
(solid line) and SLS models (dotted line). 
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Volunteers with abnormal reactions to the chemicals, here 
called outliers, were detected. This is in agreement with the 
fact that people with different skin-types or with certain skin 
diseases react differently to the same exposure of irritative 
factors. The technology may, in the future, facilitate 
screening of people before entering professions with high 
risk of skin problems, such as hairdressers and dentists. 

 
The predictive ability of this model has now been 

demonstrated for TEG and SLS. Additional studies are 
required to establish this property for other irritants. One 
may speculate if this technology also could predict some 
skin diseases, which might manifest after years, or at least 
diagnose some diseases at a very early stage, i.e. before any 
symptoms are discernible. 
 

Ollmar has suggested the term “electronic biopsies” [13], 
meaning that in the future some diagnostic work might be 
done not only non-invasively, but also without exposing the 
patient to test substances. 
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